Fertilizing Pasture: Is it Worth it in Today's Economic Conditions?

Daren Redfearn

Nebraska Extension Forage Systems Specialist Department of Agronomy & Horticulture

Mary Drewnoski

Nebraska Extension Beef Systems Specialist
Department of Animal Science

Jay Parsons

Nebraska Extension Farm Management Specialist Department of Agricultural Economics

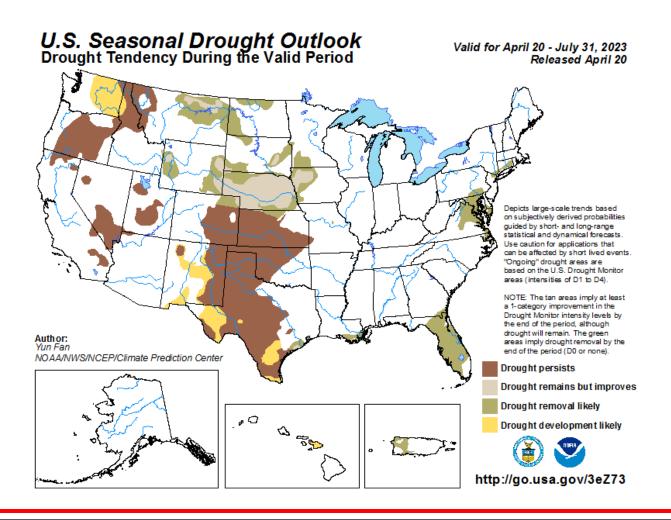
Center for Ag Profitability Webinar April 27, 2023

Smooth Bromegrass Management

- Sod-forming grass ... can become sod-bound
- Responsive to N fertilization
- 75% of growth by mid-June for non-irrigated pastures
- Harvest at early heading for hay in mid- to late May
- Minimum cutting/grazing height is 3 to 4 inches
- 3 to 4 animal unit months per acre

Current Situation

Hay prices are high (\$200/ton).


• Nitrogen fertilization costs are high (\$0.80/lb. N).

Forage supplies have dwindled.

What's your next move?

Drought Outlook for May, June, July

- Drought conditions remain, but improvement likely.
- Full production requires 16 inches of soil stored moisture and growing season rainfall.
- N fertilizer rates might need to be adjusted downward if drier weather persists.

Fertilizing Smooth Bromegrass

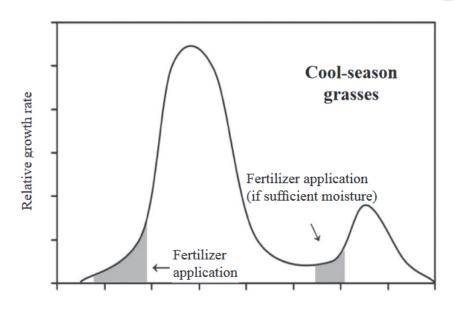


Figure 1. Apply fertilizer just prior to periods of rapid growth.

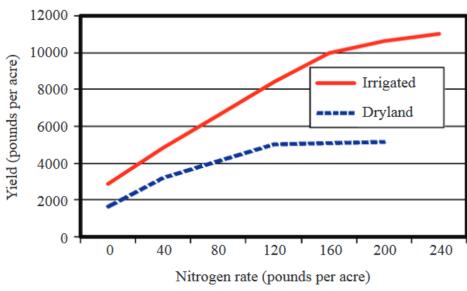
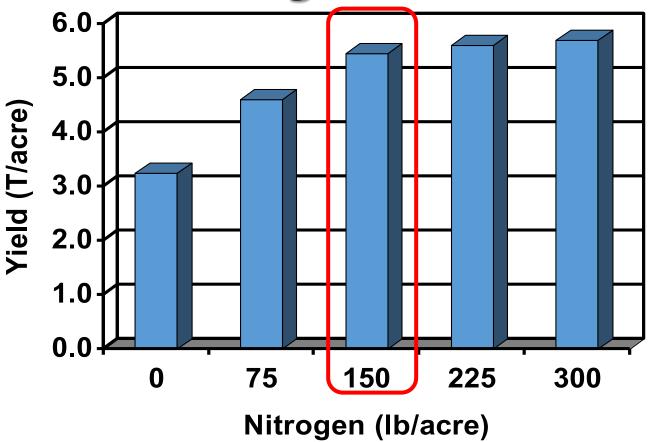
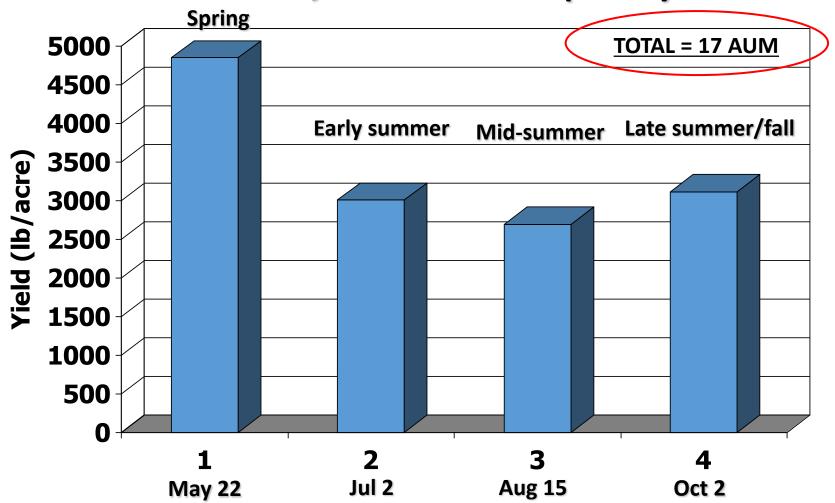



Figure 2. Typical grass yield response to nitrogen fertilizer (irrigated is statewide; dryland is for eastern Nebraska).

- 60 to 80 lbs. of actual N per acre is optimum for spring production
- Pay attention to soil test results soil pH, soil P, soil K

Effect of nitrogen fertilization on irrigated smooth bromegrass and orchardgrass yield.1



¹ Three-year mean (1970-72) from 4 harvests each year, Holt County.

Average forage yield of 8 <u>irrigated</u> cool-season grass species by harvest date, North Platte (2003)

To Fertilize or Not To Fertilize

	Fertilized			Non-fertilized
Expected forage yield	3.5 tons/acre ¹	2.5 tons/acre ²	2 tons/acre ³	1.5 tons/acre
Fertilizer costs	\$112.00	\$56.00	\$28.00	-
Application costs	\$10.00	\$10.00	\$10.00	-
Total cost per acre	\$122.00	\$66.00	\$38.00	-
Cost of additional forage per ton	\$61.00	\$66.00	\$76.00	-

¹ 140 lbs. N per acre (32% @ \$515 per ton) \$515/640 lb. = \$0.80 per lb. of N

² 70 lbs. N per acre (32% @ \$515 per ton) \$515/640 lb. = \$0.80 per lb. of N

³ 35 lbs. N per acre (32% @ \$515 per ton) \$515/640 lb. = \$0.80 per lb. of N

Marginal Analysis

		Non-fertilized		
Expected forage yield	3.5 tons/acre ¹	2.5 tons/acre ²	2 tons/acre ³	1.5 tons/acre
Marginal cost per acre	\$56.00	\$28.00	\$38.00	-
Marginal cost per ton*	\$56.00	\$56.00	\$76.00	-
Marginal value per ton (i.e. Hay Price)	\$200.00	\$200.00	\$200.00	-

^{*}Dependent upon response to fertilizer. This assumes 0.5 tons of additional yield per 35 lbs. N added.

¹ 140 lbs. N per acre (32% @ \$515 per ton) \$515/640 lb. = \$0.80 per lb. of N

² 70 lbs. N per acre (32% @ \$515 per ton) \$515/640 lb. = \$0.80 per lb. of N


³ 35 lbs. N per acre (32% @ \$515 per ton) \$515/640 lb. = \$0.80 per lb. of N

Fertilizing smooth bromegrass pasture

15-year data set with 80 lbs. N/acre

- 700 lb. initial BW
- 151-day grazing season on average
- Increased carrying capacity
 - ¾ calf per acre vs. 1 calf per acre
 - 3.1 AUM/acre vs. 4.2 AUM/acre
- No impact on ADG (1.57 lb./d)
 - Increase gain on acre basis 162 vs. 240 lb. gain/acre

Top Tips

- High hay prices make several options reasonable.
 - Inadequate soil moisture makes the 35 lbs. N rate a rationale option.

- Smooth bromegrass pastures may need some TLC.
 - Fertilize in advance of a rain.
 - Early-season weed control is important.
- Strategically fertilize more productive acres.
 - Better use of available moisture and N fertilization.
 - Application costs spread over fewer acres.

